
rook Documentation
Release 0.7.0

Carsten Ehbrecht

Jan 26, 2022

CONTENTS:

1 Documentation 3

2 Contributing 5

3 Tests 7

4 License 9

5 Credits 11

6 Indices and tables 27

i

ii

rook Documentation, Release 0.7.0

rook (the bird) The rook belongs to the crow family . . .

rook Remote Operations On Klimadaten.

Rook is a Web Processing Service (WPS) of the roocs project to allow remote operations like subsetting on climate
model data. This service provides a one-to-one mapping to the operations available in the daops library based on xarray.

CONTENTS: 1

https://rook-wps.readthedocs.io/en/latest/?badge=latest
https://github.com/roocs/rook/actions
https://github.com/roocs/rook/blob/master/LICENSE.txt
https://github.com/roocs/daops

rook Documentation, Release 0.7.0

2 CONTENTS:

CHAPTER

ONE

DOCUMENTATION

Learn more about rook in its official documentation at https://rook-wps.readthedocs.io.

Submit bug reports, questions and feature requests at https://github.com/roocs/rook/issues

3

https://rook-wps.readthedocs.io
https://github.com/roocs/rook/issues

rook Documentation, Release 0.7.0

4 Chapter 1. Documentation

CHAPTER

TWO

CONTRIBUTING

You can find information about contributing in our Developer Guide.

Please use bumpversion to release a new version.

5

https://rook-wps.readthedocs.io/en/latest/dev_guide.html
https://rook-wps.readthedocs.io/en/latest/dev_guide.html#bump-a-new-version

rook Documentation, Release 0.7.0

6 Chapter 2. Contributing

CHAPTER

THREE

TESTS

The tests folder includes additional tests for a deployed rook service.

• Smoke test: ensure service is operational. See tests/smoke/README.md.

• Storm test: load-test using locust. See tests/storm/README.md.

7

https://locust.io/

rook Documentation, Release 0.7.0

8 Chapter 3. Tests

CHAPTER

FOUR

LICENSE

Free software: Apache Software License 2.0

9

rook Documentation, Release 0.7.0

10 Chapter 4. License

CHAPTER

FIVE

CREDITS

This package was created with Cookiecutter and the bird-house/cookiecutter-birdhouse project template.

5.1 Installation

• Install from Conda

• Install from GitHub

• Configure roocs

• Start rook PyWPS service

• Run rook as Docker container

• Use Ansible to deploy rook on your System

5.1.1 Install from Conda

Warning: TODO: Prepare Conda package.

5.1.2 Install from GitHub

Check out code from the rook GitHub repo and start the installation:

$ git clone https://github.com/roocs/rook.git
$ cd rook

Create Conda environment named rook:

$ conda env create -f environment.yml
$ source activate rook

Install rook app:

$ pip install -e .
OR
make install

11

https://github.com/audreyr/cookiecutter
https://github.com/bird-house/cookiecutter-birdhouse

rook Documentation, Release 0.7.0

For development you can use this command:

$ pip install -e ".[dev]"
OR
$ make develop

5.1.3 Configure roocs

rook is using daops for the operations. It needs a roocs.ini configuration file. You can overwrite the defaults by
setting the environment variable ROOCS_CONFIG.

$ export ROOCS_CONFIG=~/.roocs.ini

There is an example in etc/sample-roocs.ini.

For more information on the configuration settings, see https://roocs-utils.readthedocs.io/en/latest/configuration.html

5.1.4 Start rook PyWPS service

After successful installation you can start the service using the rook command-line.

$ rook --help # show help
$ rook start # start service with default configuration

OR

$ rook start --daemon # start service as daemon
loading configuration
forked process id: 42

The deployed WPS service is by default available on:

http://localhost:5000/wps?service=WPS&version=1.0.0&request=GetCapabilities.

Note: Remember the process ID (PID) so you can stop the service with kill PID.

You can find which process uses a given port using the following command (here for port 5000):

$ netstat -nlp | grep :5000

Check the log files for errors:

$ tail -f pywps.log

12 Chapter 5. Credits

https://github.com/roocs/daops
https://roocs-utils.readthedocs.io/en/latest/configuration.html
http://localhost:5000/wps?service=WPS&version=1.0.0&request=GetCapabilities

rook Documentation, Release 0.7.0

. . . or do it the lazy way

You can also use the Makefile to start and stop the service:

$ make start
$ make status
$ tail -f pywps.log
$ make stop

5.1.5 Run rook as Docker container

You can also run rook as a Docker container.

Warning: TODO: Describe Docker container support.

5.1.6 Use Ansible to deploy rook on your System

Use the Ansible playbook for PyWPS to deploy rook on your system.

5.2 Configuration

5.2.1 Command-line options

You can overwrite the default PyWPS configuration by using command-line options. See the rook help which options
are available:

$ rook start --help
--hostname HOSTNAME hostname in PyWPS configuration.
--port PORT port in PyWPS configuration.

Start service with different hostname and port:

$ rook start --hostname localhost --port 5001

5.2.2 Use a custom configuration file

You can overwrite the default PyWPS configuration by providing your own PyWPS configuration file (just modifiy the
options you want to change). Use one of the existing sample-*.cfg files as example and copy them to etc/custom.
cfg.

For example change the hostname (demo.org) and logging level:

$ cd rook
$ vim etc/custom.cfg
$ cat etc/custom.cfg
[server]
url = http://demo.org:5000/wps

(continues on next page)

5.2. Configuration 13

http://ansible-wps-playbook.readthedocs.io/en/latest/index.html
http://pywps.org/
http://pywps.org/

rook Documentation, Release 0.7.0

(continued from previous page)

outputurl = http://demo.org:5000/outputs

[logging]
level = DEBUG

Start the service with your custom configuration:

start the service with this configuration
$ rook start -c etc/custom.cfg

5.3 Developer Guide

• Building the docs

• Add pre-commit hooks

• Running tests

• Run tests the lazy way

• Prepare a release

• Bump a new version

Warning: To create new processes look at examples in Emu.

5.3.1 Building the docs

First install dependencies for the documentation:

$ make develop

Run the Sphinx docs generator:

$ make docs

5.3.2 Add pre-commit hooks

Before committing your changes, we ask that you install pre-commit in your environment. Pre-commit runs git hooks
that ensure that your code resembles that of the project and catches and corrects any small errors or inconsistencies
when you git commit:

$ conda install -c conda-forge pre_commit
$ pre-commit install

14 Chapter 5. Credits

https://github.com/bird-house/emu

rook Documentation, Release 0.7.0

5.3.3 Running tests

Run tests using pytest.

First activate the rook Conda environment and install pytest.

$ source activate rook
$ pip install -r requirements_dev.txt # if not already installed
OR
$ make develop

Configure the pywps configuration with path to test data.

$ export PYWPS_CFG=/path/to/test/pywps.cfg

Run quick tests (skip slow and online):

$ pytest -m 'not slow and not online'"

Run all tests:

$ pytest

Check pep8:

$ flake8

5.3.4 Run tests the lazy way

Do the same as above using the Makefile.

$ make test
$ make test-all
$ make lint

5.3.5 Prepare a release

Update the Conda specification file to build identical environments on a specific OS.

Note: You should run this on your target OS, in our case Linux.

$ conda env create -f environment.yml
$ source activate rook
$ make clean
$ make install
$ conda list -n rook --explicit > spec-list.txt

5.3. Developer Guide 15

https://docs.pytest.org/en/latest/
https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#building-identical-conda-environments

rook Documentation, Release 0.7.0

5.3.6 Bump a new version

Make a new version of rook in the following steps:

• Make sure everything is commit to GitHub.

• Update CHANGES.rst with the next version.

• Dry Run: bumpversion --dry-run --verbose --new-version 0.8.1 patch

• Do it: bumpversion --new-version 0.8.1 patch

• . . . or: bumpversion --new-version 0.9.0 minor

• Push it: git push

• Push tag: git push --tags

See the bumpversion documentation for details.

5.4 Notebooks

You can use the rooki Python client to use the rook service. See the online notebooks with examples.

5.5 Processes

• Subset

• Average

• Orchestrate

5.5.1 Subset

5.5.2 Average

5.5.3 Orchestrate

5.6 Provenance

• Introduction

• Overview of PROV

• Example: Workflow with Subsetting Operators

• Related work in other Projects

16 Chapter 5. Credits

https://pypi.org/project/bumpversion/
https://github.com/roocs/rooki
https://nbviewer.jupyter.org/github/roocs/rooki/tree/master/notebooks/

rook Documentation, Release 0.7.0

5.6.1 Introduction

The rook processes are recording provenance information about the process execution details. This information in-
cludes:

• used software and versions (rook, daops, . . .)

• applied operators like subset and average

• used input data and parameters (cmip6 dataset, time, area)

• generated outputs (NetCDF files)

• execution time (start-time and end-time)

This information is described with the W3C PROV standard and using the Python PROV Library

5.6.2 Overview of PROV

The W3C PROV Primer document gives an overview of the W3C PROV standard.

A PROV document consists of agents, activities and entities. These can be connected via PROV relations like was-
DerivedFrom.

5.6. Provenance 17

https://www.dataone.org/uploads/DWS2015Provenance.pdf
https://www.w3.org/TR/prov-dm/
https://pypi.org/project/prov/
https://www.w3.org/TR/2013/NOTE-prov-primer-20130430/
https://www.w3.org/TR/prov-dm/

rook Documentation, Release 0.7.0

Entities

W3C PROV In PROV, physical, digital, conceptual, or other kinds of thing are called entities.

In rook we use entities for:

• workflow description,

• input datasets and

• resulting output NetCDF files.

Activities

W3C PROV Activities are how entities come into existence and how their attributes change to become new entities,
often making use of previously existing entities to achieve this.

In rook we use activities for:

• operators like subset and average.

• processes like orchestrate to run a workflow.

Agent

W3C PROV An agent takes a role in an activity such that the agent can be assigned some degree of responsibility for
the activity taking place. An agent can be a person, a piece of software or an organisation.

In rook we use agents for:

• software like rook and daops,

• organisations like Copernicus Climate Data Store.

Namespaces

W3C PROV Using URIs and namespaces, a provenance record can draw from multiple sources on the Web.

We use namespaces to use existing PROV vocabularies like prov:SoftwareAgent. These are for example:

• PROV (by W3C): https://www.w3.org/ns/prov/

• PROVONE (by DataONE): https://purl.dataone.org/provone/2015/01/15/ontology

• dcterms (Dublin Core Metadata): https://dublincore.org/specifications/dublin-core/dcmi-terms/

18 Chapter 5. Credits

https://www.w3.org/ns/prov/
https://www.dataone.org/
https://purl.dataone.org/provone/2015/01/15/ontology
https://dublincore.org/specifications/dublin-core/dcmi-terms/

rook Documentation, Release 0.7.0

Subset Example

The activity subset is started by the software agent daops (Python library) which was triggered by rook (data-
reduction service).

The NetCDF file tas_day_...nc entity was derived from c3s-cmip6 dataset entity using the activity subset.

Workflow Example

W3C PROV Plans Activities may follow pre-defined procedures, such as recipes, tutorials, instructions, or workflows.
PROV refers to these, in general, as plans.

In W3C PROV workflows are named plans.

The activity orchestrate is started by the agent rook. It uses a workflow document entity (plan) which consists
of a subset and average activity. These activities are started by the software agent daops.

5.6. Provenance 19

rook Documentation, Release 0.7.0

5.6.3 Example: Workflow with Subsetting Operators

The rooki client for rook has example notebooks for process executions and displaying the provenance information.

You can run the orchestrate process to execute a workflow with subsetting operators and show the provenance
document:

1 from rooki import operators as ops
2 wf = ops.Subset(
3 ops.Subset(
4 ops.Input(
5 'tas', ['c3s-cmip6.ScenarioMIP.INM.INM-CM5-0.ssp245.r1i1p1f1.day.tas.gr1.

→˓v20190619']
6),
7 time="2016-01-01/2020-12-30",
8),
9 time="2017-01-01/2017-12-30",

10)
11 resp = wf.orchestrate()
12 # show URLs of output files
13 resp.download_urls()
14 # show URL to provenance document
15 resp.provenance()
16 # show URL to provenance image
17 resp.provenance_image()

The response of the process includes a provenance document in PROV-JSON format:

{
"prefix": {
"provone": "http://purl.dataone.org/provone/2015/01/15/ontology#",
"dcterms": "http://purl.org/dc/terms/",
"default": "http://purl.org/roocs/prov#"

},
"agent": {
"copernicus_CDS": {
"prov:type": "prov:Organization",
"dcterms:title": "Copernicus Climate Data Store"

},
"rook": {
"prov:type": "prov:SoftwareAgent",
"dcterms:source": "https://github.com/roocs/rook/releases/tag/v0.2.0"

},
"daops": {
"prov:type": "prov:SoftwareAgent",
"dcterms:source": "https://github.com/roocs/daops/releases/tag/v0.3.0"

}
},
"wasAttributedTo": {
"_:id1": {
"prov:entity": "rook",
"prov:agent": "copernicus_CDS"

}
},

(continues on next page)

20 Chapter 5. Credits

https://rooki.readthedocs.io/en/latest/
https://nbviewer.jupyter.org/github/roocs/rooki/tree/master/notebooks/demo/
https://openprovenance.org/prov-json/

rook Documentation, Release 0.7.0

(continued from previous page)

"entity": {
"workflow": {
"prov:type": "provone:Workflow"

},
"c3s-cmip6.ScenarioMIP.INM.INM-CM5-0.ssp245.r1i1p1f1.day.tas.gr1.v20190619": {},
"tas_day_INM-CM5-0_ssp245_r1i1p1f1_gr1_20160101-20201229.nc": [{}, {}],
"tas_day_INM-CM5-0_ssp245_r1i1p1f1_gr1_20170101-20171229.nc": {}

},
"activity": {
"orchestrate": [{
"prov:startedAtTime": "2021-02-15T13:24:33"

}, {
"prov:endedAtTime": "2021-02-15T13:24:57"

}],
"subset_tas_1": {
"time": "2016-01-01/2020-12-30",
"apply_fixes": false

},
"subset_tas_2": {
"time": "2017-01-01/2017-12-30",
"apply_fixes": false

}
},
"wasAssociatedWith": {
"_:id2": {
"prov:activity": "orchestrate",
"prov:agent": "rook",
"prov:plan": "workflow"

},
"_:id3": {
"prov:activity": "subset_tas_1",
"prov:agent": "daops",
"prov:plan": "workflow"

},
"_:id5": {
"prov:activity": "subset_tas_2",
"prov:agent": "daops",
"prov:plan": "workflow"

}
},
"wasDerivedFrom": {
"_:id4": {
"prov:generatedEntity": "tas_day_INM-CM5-0_ssp245_r1i1p1f1_gr1_20160101-20201229.nc

→˓",
"prov:usedEntity": "c3s-cmip6.ScenarioMIP.INM.INM-CM5-0.ssp245.r1i1p1f1.day.tas.

→˓gr1.v20190619",
"prov:activity": "subset_tas_1"

},
"_:id6": {
"prov:generatedEntity": "tas_day_INM-CM5-0_ssp245_r1i1p1f1_gr1_20170101-20171229.nc

→˓",
"prov:usedEntity": "tas_day_INM-CM5-0_ssp245_r1i1p1f1_gr1_20160101-20201229.nc",

(continues on next page)

5.6. Provenance 21

rook Documentation, Release 0.7.0

(continued from previous page)

"prov:activity": "subset_tas_2"
}

}
}

This provenance document can also be displayed as an image:

5.6.4 Related work in other Projects

The ESMValTool project is recording provenance information of scientific workflows run as diagnostics.

The Climate4Impact project is using provenance to record the workflow of data staging and creating Jupyter notebooks.

5.7 Changes

5.7.1 0.7.0 (2021-11-08)

• Added “subset-by-point” (#190).

• Updated to clisops 0.7.0.

• Updated to daops 0.7.0.

• Updated dashboard (#195).

• Updated provenance namespace (#188).

22 Chapter 5. Credits

https://docs.esmvaltool.org/en/latest/community/diagnostic.html?highlight=provenance#recording-provenance
https://is.enes.org/files/C4ISWIRRLTraining.pdf

rook Documentation, Release 0.7.0

5.7.2 0.6.2 (2021-08-11)

• Update pywps 4.4.5 (#186).

• Updated provenance types and ids (#184).

• Update dashboard (#183).

5.7.3 0.6.1 (2021-06-18)

• Added initial dashboard (#182).

• Update clisops 0.6.5.

5.7.4 0.6.0 (2021-05-20)

• Inventory urls removed from etc/roocs.ini. Intake catalog url now lives in daops. (#175)

• Intake catalog base and search functionality moved to daops. Database intake implementation remains in rook.
(#175)

• Updated to roocs-utils 0.4.2.

• Updated to clisops 0.6.4.

• Updated to daops 0.6.0.

• Added initial usage process (#178)

5.7.5 0.5.0 (2021-04-01)

• Updated pywps 4.4.2.

• Updated clisops 0.6.3.

• Updated roocs-utils 0.3.0.

• Use FileMapper for search results (#169).

• Using intake catalog (#148).

5.7.6 0.4.2 (2021-03-22)

• Updated clisops 0.6.2

5.7.7 0.4.1 (2021-03-21)

• Updated pywps 4.4.1 (#162, #154, #151).

• Use pywps storage_copy_function=link (#154).

• Updated director with InvalidCollection error (#153).

• Added locust (storm) tests (#141, #149, #155).

• Updated smoke tests (#134, #137).

• Cleaned requirements (#152).

5.7. Changes 23

rook Documentation, Release 0.7.0

• Fixed warning in workflow yaml loaded (#142).

• Removed original files option for average and added test (#136).

5.7.8 0.4.0 (2021-03-04)

• Removed cfunits, udunits2, cf-xarray and python-dateutil as dependencies.

• Use daops>=0.5.0

• Renamed axes input of wps_average.Average to dims

• Added wps_average to work with daops.ops.average (#126)

• Fixed tests for new inventory (#127)

• Use apply_fixes=False for average (#129)

• Added smoke tests (#131, #134)

5.7.9 0.3.1 (2021-02-24)

• Pin cf_xarray <0.5.0 . . . does not work with daops/clisops.

5.7.10 0.3.0 (2021-02-24)

• Fixed testdata using git-python (#123).

• Removed xfail where not needed (#121).

• Updated PyWPS 4.4.0 (#120).

• Updated provenance (#112, #114 ,#119).

• Fixed subset alignment (#117).

• apply_fixes and original_files option added for WPS processes and the Operator class (#111).

• Replaced travis with GitHub CI (#104).

• director module added. This makes decisions on what is returned - NetCDF files or original file URLs (#77,
#83)

• python-dateutil>=2.8.1 added as a new dependency.

• Allow no inventory option when processing datasets

• c3s-cmip6 dataset ids must now be identified by the use of c3s-cmip6 (#87).

• Fixed workflow (#79, #75, #71).

24 Chapter 5. Credits

rook Documentation, Release 0.7.0

5.7.11 0.2.0 (2020-11-19)

Changes:

• Build on cookiecutter template with cruft update.

• Available processes: subset, orchestrate.

• Using daops for subsetting operation.

• Using a simple workflow implementation for combining operators.

• Process outputs are provided as Metalink documents.

• Added initial support for provenance documentation.

5.7.12 0.1.0 (2020-04-03)

• First release.

5.7. Changes 25

rook Documentation, Release 0.7.0

26 Chapter 5. Credits

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

27

	Documentation
	Contributing
	Tests
	License
	Credits
	Installation
	Install from Conda
	Install from GitHub
	Configure roocs
	Start rook PyWPS service
	… or do it the lazy way

	Run rook as Docker container
	Use Ansible to deploy rook on your System

	Configuration
	Command-line options
	Use a custom configuration file

	Developer Guide
	Building the docs
	Add pre-commit hooks
	Running tests
	Run tests the lazy way
	Prepare a release
	Bump a new version

	Notebooks
	Processes
	Subset
	Average
	Orchestrate

	Provenance
	Introduction
	Overview of PROV
	Entities
	Activities
	Agent
	Namespaces
	Subset Example
	Workflow Example

	Example: Workflow with Subsetting Operators
	Related work in other Projects

	Changes
	0.7.0 (2021-11-08)
	0.6.2 (2021-08-11)
	0.6.1 (2021-06-18)
	0.6.0 (2021-05-20)
	0.5.0 (2021-04-01)
	0.4.2 (2021-03-22)
	0.4.1 (2021-03-21)
	0.4.0 (2021-03-04)
	0.3.1 (2021-02-24)
	0.3.0 (2021-02-24)
	0.2.0 (2020-11-19)
	0.1.0 (2020-04-03)

	Indices and tables

